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6 клас 
 

6.1. Деякий прямокутник розрізано на 5 однакових прямокутників 

завбільшки 2 × 3. Який найменший можливий периметр початкового 

прямокутника? 
 

Відповідь: 22. 

Розв'язання. Площа великого прямокутника складає 2 ∙ 3 ∙ 5 = 30. Зрозуміло, що 

сторони цього прямокутника – цілі числа. При цьому найменшою сторона 

великого прямокутника може бути рівною 2. Випишемо усі можливі сторони 

великого прямокутника: 30 = 2 ∙ 15 = 3 ∙ 10 = 5 ∙ 6. Порахуємо їхні периметри: 

2 ∙ (2 + 15) = 34, 2 ∙ (3 + 10) = 26, 2 ∙ (5 + 6) = 22. Як бачимо, то найменший 

можливий периметр має прямокутник завбільшки 5 × 6. Залишається показати, що такий прямокутник 

можна розрізати належним чином, тобто на 5 прямокутників 2 × 3. Приклад наведений на рис. 1.  

 

6.2. Для деяких натуральних чисел 𝑎, 𝑏, 𝑐, не обов’язково різних, на дошці записали 

числа 𝑎 + 2025𝑏, 3𝑏 + 2024𝑐, 𝑐 + 2027𝑎. Виявилось, що не всі з них однакові. Якого 

найменшого значення може набувати різниця між найбільшим та найменшим із 

записаних чисел? 
(Михайло Штанденко) 

 

Відповідь. 2. 

Розв’язання. Приклад: 𝑎 = 𝑏 = 𝑐 = 1, тоді ці числа рівні 2026, 2027, 2028.  

Покажемо, що відповідь принаймні 2. Помітимо, що сума цих чисел рівна 2028𝑎 + 2028𝑏 + 2025𝑐, а 

тому ділиться на 3. Якби найбільше число відрізнялось від найменшого на 1, то числа б мали вигляд 

𝑡, 𝑡, 𝑡 + 1, чи 𝑡, 𝑡 + 1, 𝑡 + 1 для якогось 𝑡, а тому їх сума не була б кратна 3. 

 

6.3. Михайлові треба вгадати пароль, що складається з чотирьох цифр 𝑎𝑏𝑐𝑑, не 

обов’язково різних. Він намагається його відгадати шляхом називання своїх варіантів. 

Після кожної спроби йому кажуть число, що дорівнює сумі різниць по усіх чотирьох 

позиціях між справжнім паролем і його здогадкою, при цьому щоразу від більшої цифри 

віднімають меншу. Наприклад, при справжньому паролі 1234 та варіанті для спроби 

вгадати 9250, він отримає у відповідь число  
(9 − 1) + (2 − 2) + (5 − 3) + (4 − 0) = 8 + 0 + 2 + 4 = 14. 

Доведіть, що після четвертої спроби Михайло гарантовано знатиме пароль. 

(Михайло Штанденко) 
 

Розв’язання. Першим кроком задамо шифр 0000, тоді у відповідь ми отримаємо число  

𝑆1 = 𝑎 + 𝑏 + 𝑐 + 𝑑. 
Другим кроком задамо шифр 9000, тоді у відповідь ми отримаємо число  

𝑆2 = 9 − 𝑎 + 𝑏 + 𝑐 + 𝑑. 
Тоді 𝑆1 − 𝑆2 = 2𝑎 − 9 і ми знаходимо першу цифру 𝑎 шифру. Далі аналогічно  

Третім кроком задамо шифр 0900, тоді у відповідь ми отримаємо число  

𝑆3 = 𝑎 + 9 − 𝑏 + 𝑐 + 𝑑. 
Тоді 𝑆1 − 𝑆3 = 2𝑏 − 9 і ми знаходимо другу цифру 𝑏 шифру.  

Четвертим кроком задамо шифр 0090, тоді у відповідь ми отримаємо число  

𝑆4 = 𝑎 + 𝑏 + 9 − 𝑐 + 𝑑. 
Тоді 𝑆1 − 𝑆4 = 2𝑐 − 9 і ми знаходимо третю цифру 𝑐 шифру.  

Тепер знаходимо і останню цифру шифру 𝑑 = 𝑆1 − 𝑎 − 𝑏 − 𝑐. 
 

6.4. Дано таблицю 𝑛 × 𝑛. Аня та Соломія по черзі ставлять фішки в порожні клітинки 

таблиці, поки всі клітинки не стануть зайнятими. В кінці за кожний з 2𝑛 рядків та 

Рис. 1 
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стовпчиків 10 очок отримує та з дівчат, чиїх фішок більше, ніж фішок опонентки та по 

5 очок отримують обидві, якщо їх фішок виявилася однакова кількість. Та, хто отримає 

сумарно більше очок, набере 2 бали, якщо очок порівну, то кожна набере по 1 балу. Для 

кожного 𝑛 з’ясуйте скільки балів кожен з гравців може гарантовано набрати, якщо 

першою ходить Аня. 

(Олексій Масалітін) 
 

Відповідь: Аня 2 бали, Соломія 0 балів для непарних 𝑛 та по 1 балу обидві – для парних 𝑛 

Розв’язання:  Розглянемо випадок непарного 𝑛. Наведемо виграшну стратегію для Ані. Першим ходом 

поставимо фішку в центральну клітинку, а далі будемо відображати ходи Соломії відносно 

центральної клітинки. Тоді якщо Соломія виграє деякий не центральний рядок, то Аня виграє рядок, 

що симетричний йому відносно центрального, а якщо вони поділять очки в цьому рядку, то в 

симетричному також поділять. Якщо розбити всі рядки та стовпчики окрім центральних на пари 

симетричних, то Аня і Соломія отримають за них порівну очків. Але в центральних рядку і стовпчику 

Аня буде мати на одну фішку більше, тож вона отримає на 2 очки більше ніж Соломія. 
 

Розглянемо тепер випадок парного 𝑛. Розіб’ємо всі клітинки на пари центрально симетричних. Якщо 

в кожній парі в кінці гри буде стояти одна фішка Ані і одна фішка Соломії, то аналогічно попередньому 

випадку вони здобудуть порівну очків. Доведемо тепер, що і Аня, і Соломія можуть забезпечити таку 

ситуацію. Соломії достатньо кожним ходом ставити фішку в центрально симетричну клітинку до тієї, 

куди фішку поставила Аня. Наведемо тепер стратегію для Ані. Першим ходом поставимо фішку у 

довільну клітинку 𝐴. Центрально симетричну клітинку до клітинки 𝐴 ми позначимо через 𝐵. Після 

цього будемо ходити центрально симетрично ходам Соломії, поки вона не поставить свою фішку в 

клітинку 𝐵. Після цього в кожній парі центрально симетричних клітинок або не стоїть жодної фішки, 

або стоїть по одній фішці кожної з дівчат. Знову поставимо фішку у довільну клітинку і будемо діяти 

аналогічним чином, що в деякий момент призведе до того, що в кожній парі центрально симетричних 

клітинок буде по одній фішці Ані і Соломії. Таким чином, кожна з них може забезпечити собі хоча б 

нічию. 

 

7 клас 
 

7.1. Для натурального числа 𝑘 суму його цифр позначимо через 𝑆(𝑘). Нехай 𝑛 – 2026-

цифрове натуральне число, 𝑚 = 𝑆(𝑛). Яке найбільше значення може приймати 𝑆(𝑚)? 
 

Відповідь: 36. 

Розв’язання. Найбільше значення числа 𝑆(𝑛) досягається для числа, що складається з 2026 цифр 9, 

таким чином 𝑆(𝑛) ≤ 2026 ∙ 9 = 18234. Подивимося, для якого натурального числа  значення 𝑆(𝑆(𝑛)) 
буде найбільшим.  

Якщо 𝑆(𝑛) є п’ятицифровим, то його перша цифра 1. Якщо воно починається з цифр 18, то найбільшу 

суму цифр матиме число 18199, тоді 𝑆(𝑆(𝑛)) = 28. Якщо воно починається з цифр 17, то найбільшу 

суму цифр матиме число 17999, тоді 𝑆(𝑆(𝑛)) = 35. Усі інші п’ятицифрові числа, що задовольняють 

умову задачі, зрозуміло, матимуть меншу суму цифр. 

Якщо 𝑆(𝑛) є чотирицифровим, то найбільшу суму цифр матиме число 9999, тоді 𝑆(𝑆(𝑛)) = 36. 

Зрозуміло, що усі інші числа матимуть меншу суму цифр. 

Для завершення доведення покажемо, що таке число існує.  

𝑛 = 99…9⏟  
1111

00…0⏟  
915

 ⇒  𝑆(𝑛) = 9999 ⇒  𝑆(𝑆(𝑛)) = 36. 

 

7.2. На столі лежить купка з 𝑛 камінців. Петрик та Василь грають у таку гру. Вони по 

черзі беруть собі камінці з купки, причому своїм ходом Петрик може взяти рівно 2𝑘 

камінців для деякого цілого невід’ємного 𝑘, тобто 1, 2, 4, 8, … камінців, якщо в купці є 

їх достатня кількість. Аналогічно, Василь своїм ходом може взяти рівно 3𝑚 камінців для 
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деякого цілого невід’ємного 𝑚, тобто 1, 3, 9, 27, … камінців, якщо в купці є їх достатня 

кількість. Перемагає той, хто забере з купки останній камінець. Хто переможе за 

правильної гри обох, якщо починає Петрик? 

(Богдан Рубльов) 
 

Відповідь: Петрик. 

Розв'язання. Позначимо через 𝑛 – поточну кількість камінців в купці. Для 𝑛 = 2𝑙 Петрик перемагає 

черговим своїм ходом, оскільки може взяти усі камінці купки. Для будь-якого 𝑛 ≠ 2𝑙 Петрик може 

зробити такий свій хід, тобто забрати 2𝑘 камінців, що 𝑛 − 2𝑘 ≠ 3𝑙 , 𝑙 ∈ 𝑍+. Дійсно, принаймні одне з 

чисел: 𝑛 − 1 або 𝑛 − 2 задовольняє умову. 

Таким чином в кожній ситуації Петрик може або перемогти, або зробити хід, після якого Василь не 

може перемогти своїм ходом. Оскільки кількість камінців постійно зменшується, то гра завершиться, 

при цьому Василь перемогти не зможе. Значить переможе Петрик.  

 

7.3. Микола розставив по колу 𝑛 ≥ 3 цілих чисел. Він стверджує, що для кожної 

послідовної трійки чисел (𝑎, 𝑏, 𝑐) на колі справджується умова: число 𝑎 + 𝑐 ділиться 

націло на число 2𝑏 − 1. Для кожного натурального числа 𝑛 ≥ 3 з’ясуйте, чи міг Микола 

сказати правду, якщо: 

а) числа можуть мати рівні модулі, але не усі числа рівні один одному; 

б) усі числа на колі різні за модулем? 

(Михайло Нижник) 
 

Відповідь.  а) так; б) ні. 

Розв’язання. а) Наведемо приклад: два сусідніх числа – це −1, усі інші числа – це 1.  
 

б) Припустимо, що Микола каже правду, при цьому на колі розставлені числа 𝑎1, 𝑎2, …, 𝑎𝑛. За умовою 

вони мають попарно різні модулі. А тому й самі є попарно різними. Розглянемо тоді серед них 

найбільше за модулем число 𝑎𝑘. Будемо вважати, що 𝑎𝑛 = 𝑎0 та 𝑎𝑛+1 = 𝑎1. Оскільки всі числа на колі 

різні, то маємо |𝑎𝑘−1| ≤ |𝑎𝑘| − 1 та |𝑎𝑘+1| ≤ |𝑎𝑘| − 1. Звідси 

|𝑎𝑘−1 + 𝑎𝑘+1|≤ |𝑎𝑘−1| + |𝑎𝑘+1| ≤ 2|𝑎𝑘| − 2 

Але з умови подільності 2𝑎𝑘 − 1 | 𝑎𝑘−1 + 𝑎𝑘+1 
випливає, що  

|𝑎𝑘−1 + 𝑎𝑘+1| ≥ |2𝑎𝑘 − 1| ≥ 2|𝑎𝑘| − 1. 
Останні дві нерівності суперечать одна одній.  

 

7.4. Нехай 𝐾 − довільна точка сторони 𝐴𝐷 

прямокутника 𝐴𝐵𝐶𝐷. Точки 𝐸 і 𝐹 обрано на 

променях 𝐴𝐵 та 𝐷𝐶 відповідно так, що 

𝐴𝐸 = 𝐶𝐾 та 𝐷𝐹 = 𝐵𝐾, а точка 𝑃 лежить між 

прямими 𝐴𝐵 та 𝐶𝐷 так, що ∠𝐾𝐶𝐷 = 2∠𝑃𝐴𝐵 

та ∠𝐾𝐵𝐴 = 2∠𝑃𝐷𝐶. Доведіть, що 𝑃𝐸 = 𝑃𝐹. 

(Вадим Соломка) 
 

Розв’язання. На стороні 𝐵𝐶 оберемо точку 𝐿 так, що 𝐵𝐿 = 𝐷𝐾 (рис. 2). Прямокутні 

∆𝐷𝐶𝐾 та ∆𝐵𝐴𝐿 рівні за двома катетами, тому 𝐴𝐸 = 𝐶𝐾 = 𝐴𝐿 та ∠𝐾𝐶𝐷 = ∠𝐸𝐴𝐿 = 2∠𝑃𝐴𝐸, але ∆𝐸𝐴𝐿 – 

рівнобедрений, тому 𝐴𝑃 − серединний перпендикуляр до відрізка 𝐸𝐿, аналогічно 𝐷𝑃 − серединний 

перпендикуляр до відрізка 𝐹𝐿, отже точка 𝑃𝐸 = 𝑃𝐿 = 𝑃𝐹, чого ми й прагнули. 

 

8 клас 
 

8.1. Жадібний Петрик отримав від батьків на день народження 2026 цукерок і покликав 

у гості 8 своїх друзів. Він придумав таку гру з цукерками: на початку гри Петрик ділить 

Рис. 2 
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усі цукерки поміж усіма друзями так, щоб кожний отримав не менше 1 цукерки, при 

цьому собі він не лишив жодної. Далі усі друзі, за виключенням Петрика, мають право 

робити такі ходи. Якщо у деяких двох з них є принаймні по одній цукерці, то той, в кого 

їх менше передає усі свої цукерки іншому. Якщо в певний момент у двох друзів стане 

однакова кількість цукерок, що відмінна від 0, то друзі залишають собі всі 2026 

цукерок. Якщо після 7 ходів усі 2026 цукерок опиняться в одного з друзів, то він має 

усі цукерки повернути Петрику. Чи може Петрик поділити цукерки з самого початку 

таким чином, щоб наприкінці гри отримати назад усі цукерки? 

(Богдан Рубльов) 
 

Відповідь: так. 

Розв'язання. Петрик роздає друзям таку кількість цукерок:  

1024 = 210, 512 = 29, 256 = 28, 128 = 27, 64 = 26, 32 = 25, 8 = 23, 2 = 21. 
Щоб гра закінчилася до того, як один з них збере усі цукерки, має справджуватися така рівність: 

2𝑎 +⋯+ 2𝑏 = 2𝑐 +⋯+ 2𝑑 , 
Де усі показники степенів попарно різні числа. Але якщо скоротити цю рівність на найменший степінь 

числа 2, що в неї входить, то отримаємо, що парне число дорівнює непарному – суперечність. Таким 

чином Петрик отримає усі цукерки.  

 

8.2. Натуральні числа від 1 до 20 розбили на 10 пар і в кожній парі порахували 

найбільший спільний дільник елементів пари. Чи може сума 10 отриманих чисел 

перевищувати 70? 

 (Антон Тригуб, Федір Юдін) 
 

Відповідь. ні. 

Розв’язання. Помітимо, що для різних натуральних 𝑎 < 𝑏 маємо що 𝑎 ≥ НСД(𝑎, 𝑏) та 𝑏 ≥ 2 ⋅

НСД(𝑎, 𝑏). Отже НСД(𝑎, 𝑏) ≤
𝑎+𝑏

3
. Тоді маємо, що сума отриманих 100 НСД не перевищує  

1 + 2 +⋯+ 20

3
=  
210

3
= 70, 

що і треба було довести. 

 

8.3. Факторіалом натурального числа 𝑘 назвемо добуток усіх натуральних чисел від 1 

до 𝑘, тобто 𝑘! = 1 ∙ 2 ∙ 3 ∙ … ∙ 𝑘. Задане натуральне число 𝑛 > 1. На дошці виписали 

декілька, не обов’язково різних, натуральних чисел, сума факторіалів яких дорівнює 

𝑛! − 1. Яка найменша кількість виписаних чисел? 

Олексій Масалітін) 
 

Відповідь: 
(𝑛−1)𝑛

2
. 

Розв’язання. Для початку, помітимо, що (𝑛 + 1)! − 𝑛! = 𝑛 ⋅ 𝑛!. Тоді має місце така рівність: 

𝑛! − 1 = (𝑛! − (𝑛 − 1)!) + ((𝑛 − 1)! − (𝑛 − 2)!) + ⋯+ (2! − 1!) = 

= (𝑛 − 1) ⋅ (𝑛 − 1)! + (𝑛 − 2) ⋅ (𝑛 − 2)! + ⋯+ 2 ⋅ 2! + 1 ⋅ 1!. 

Також помітимо, що 1 + 2 + 3 + 4 +⋯+ 𝑛 − 1 =
(𝑛−1)𝑛

2
, а значить нам достатньо взяти 𝑘 разів число 

𝑘! для 𝑘 від 1 до 𝑛 − 1, щоб отримати приклад на 
(𝑛−1)𝑛

2
чисел.  

Доведемо тепер, що на дошці повинно бути написано хоча б 
(𝑛−1)𝑛

2
 чисел. Якщо число 𝑘! написане 

більше ніж 𝑘 разів, то деякі 𝑘 + 1 екземплярів цих чисел можна замінити на число 𝑘 + 1 (бо (𝑘 + 1)! =
(𝑘 + 1)𝑘!) і зменшити кількість чисел на дошці. Розглянемо приклад, в якому кількість написаних 

чисел мінімальна. Тоді з вищесказаного випливає, що число 𝑘! на дошці записано не більше ніж 𝑘 

разів. Тоді сума їх факторіалів не перевищує 𝑛! − 1 за тотожністю, що була доведена вище. При чому 
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рівність досягається лише коли число 𝑘 на дошці записано рівно 𝑘 разів для всіх 𝑘. Це означає, що 

приклад, що наведений вище – мінімальний, тобто на дошці буде хоча б 
(𝑛−1)𝑛

2
 чисел. 

 

8.4. Дано гострокутний трикутник 𝐴𝐵𝐶 з кутом ∠𝐴 = 45°. Всередині трикутника 

вибрано точку 𝑋 так, що ∠𝐴𝐶𝑋 =  2∠𝑋𝐶𝐵 та ∠𝐴𝐵𝑋 =  2∠𝑋𝐵𝐶. На сторонах 𝐴𝐶 і 𝐴𝐵 

позначено такі точки 𝑌 та 𝑍 відповідно, що 𝐶𝑌 =
 𝐶𝑋 і 𝐵𝑍 =  𝐵𝑋. Доведіть, що пряма 𝑌𝑍 проходить 

через центр описаного кола трикутника 𝐴𝐵𝐶. 

(Яна Колодач) 
 

Доведення. Продовжимо прямі 𝐶𝑋 і 𝐵𝑋 до перетину з 

описаним колом трикутника 𝐴𝐵𝐶 у точках 𝐹 та 𝐸 

відповідно (рис. 3). 

Після простого підр  ахунку кутів маємо, що ∠𝐹𝑋𝐵 =  45° 
та ∠𝑋𝐹𝐵 =  ∠𝐶𝐴𝐵 =  45°. 
Отже, 𝑋𝐵 =  𝑍𝐵 =  𝐹𝐵, а ∠𝑋𝐵𝐹 =  90°. Тоді ∠𝐸𝐵𝐹 =
 90°, тому центр описаного кола 𝑂 лежить на прямій 𝐸𝐹. 

З іншого боку, точки 𝑋, 𝑍 та 𝐹 лежать на колі з центром у 𝐵. 

Звідси ∠𝑍𝐹𝑋 =  
1

2
∠𝑋𝐵𝑍 =  ∠𝐶𝐵𝑋. Оскільки ∠𝐶𝐵𝑋 =

 ∠𝐸𝐹𝐶 як кути, що опираються на одну дугу описаного кола 𝐴𝐵𝐶, то пряма 𝐸𝐹 

проходить через точку 𝑍. Аналогічно доводиться, що пряма 𝐸𝐹 проходить і через точку 𝑌. З цього 

випливає, що точки 𝑌, 𝑍 і центр кола 𝑂 лежать на одній прямій. 

 

9 клас 
 

9.1. Розв’яжіть в раціональних числах 𝑥, 𝑦 систему рівнянь: 

{
𝑥2(𝑦2 + 𝑦 + 1) = 𝑦 + 1,

𝑦2(𝑥2 + 𝑥 + 1) = 𝑥 + 1.
 

(Богдан Рубльов) 
 

Відповідь: (𝑥, 𝑦): (0, −1), (−1, 0). 
Розв'язання. Припустимо, що 𝑥 = 1, тоді з другого рівняння маємо, що 3𝑦2 = 2 – раціональних 

розв’язків немає. Аналогічно при 𝑦 = 1. Таким чином надалі вважаємо, що 𝑥, 𝑦 ≠ 1. 
 

Домножимо перше рівняння на 𝑦 − 1, а друге – на 𝑥 − 1 тоді матимемо, що 

{
𝑥2(𝑦3 − 1) = 𝑦2 − 1,

𝑦2(𝑥3 − 1) = 𝑥2 − 1),
 ⇒ {

𝑥2𝑦3 = 𝑥2 + 𝑦2 − 1,

𝑦2𝑥3 = 𝑦2 + 𝑥2 − 1,
 ⇒ 𝑥2𝑦3 = 𝑥2 + 𝑦2 − 1 = 𝑦2𝑥3. 

Таким чином 𝑥2𝑦3 = 𝑥3𝑦2. Можливі варіанти 𝑥 = 0 або 𝑦 = 0, або 𝑥 = 𝑦. 
 

Якщо 𝑥 = 𝑦, то з першого рівняння: 𝑥4 + 𝑥3 + 𝑥2 − 𝑥 − 1 = 0, яке з теореми про раціональні корені 

полінома, їх немає.  
 

Якщо 𝑥 = 0, то з першого рівняння: 𝑦 = −1, , що дає перший розв’язок (𝑥, 𝑦) = (0,−1). З міркувань 

симетрії другим розв’язком є пара (𝑥, 𝑦) = (−1, 0). 
 

9.2. Натуральні числа 𝑎1, 𝑎2, … , 𝑎2026 задовольняють умову: 

𝑎𝑛+1 = 𝑎1
1 + 𝑎2

2 + 𝑎3
3 +⋯+ 𝑎𝑛

𝑛, 
для усіх натуральних чисел 1 ≤ 𝑛 ≤ 2025. Яку найбільшу можливу кількість степенів 

натуральних чисел з показником більшим за один може містити цей набір чисел 

𝑎1, 𝑎2, … , 𝑎2026? 

(Вадим Соломка) 
 

Рис. 3 
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Відповідь. 2. 

Розв’язання. Покажемо, що лише 𝑎1 = 𝑎2 можуть бути степенями натуральних чисел зі степенем 

більше за 1. Припустимо, що для деяких натуральних чисел 𝑥 та 𝑘 > 1 справджується рівність: 

𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−1
𝑛−1 = 𝑎𝑛−1(1 + 𝑎𝑛−1

𝑛−2) = 𝑥𝑘 . 
Очевидно, що НСД(𝑎𝑛−1, 1 + 𝑎𝑛−1

𝑛−2) = 1, а тому 𝑎𝑛−1 = 𝑦
𝑘 та 1 + 𝑎𝑛−1

𝑛−2 = 𝑧𝑘, для деяких натуральних 

𝑦 і 𝑧. З останнього рівняння різниця деяких 𝑘-тих степенів натуральних чисел дорівнює 1, що 

неможливо, якщо показник степеня більший за 1. Справді, зрозуміло, що 

𝑎𝑘 − 𝑏𝑘 = (𝑎 − 𝑏)(𝑎𝑘−1 + 𝑎𝑘−2𝑏 +⋯+ 𝑎𝑏𝑘−2 + 𝑏𝑘−1) ≥ 𝑘 ≥ 2. 
 

9.3. По колу стоять 9𝑘 точок. Їх пофарбували в 3 кольори так, що є рівно 3𝑘 точок 

кожного кольору. Чи завжди можна розрізати дане коло на такі три дуги, кожна з яких 

містить по 3𝑘 точок, щоб на одній з дуг було б принаймні 𝑘 точок першого кольору, в 

другій – принаймні 𝑘 точок другого кольору, а в третій – принаймні 𝑘 точок третього 

кольору? 

(Антон Тригуб) 
 

Відповідь: так. 

Розв'язання. Завжди існує 3𝑘 послідовних точок, серед яких рівно 𝑘 жовтих. Дійсно, поділимо коло 

на 3 рівні частини по 3𝑘 точок. Якщо в одній з трьох частин є 𝑘 жовтих точок, то твердження доведене. 

Якщо ні, то виберемо ту дугу, в якій жовтих точок більше ніж 𝑘. Вона існує, бо в кожній з трьох частин 

не може бути менше ніж 𝑘 жовтих точок, бо тоді разом їх буде менше ніж 3𝑘 на усьому колі, що 

суперечить умові. Давайте пересувати цю дугу з 3𝑘 послідовних точок вздовж кола. При кожному 

переході через точку, тобто коли з одного боку крайня точка виходить з дуги, а нова з іншого боку 

додається, то кількість жовтих точок змінюється не більше ніж на 1. Оскільки після таких ходів дуга 

опиниться в положення, де на ній менше ніж 𝑘 жовтих точок, то було положення, коли цих точок було 

рівно 𝑘. 

Тепер розглянемо розрізання кола на 3 рівні частини так, щоб одна з цих частин, позначимо її через А, 

містить рівно 𝑘 жовтих точок. Інші дві частини позначимо Б та В. У частині А залишилося рівно 2𝑘 не 

жовтих точок, без обмеження загальності припустимо, що там щонайменше 𝑘 синіх точок. Тоді в 

частині А є щонайбільше 𝑘 зелених точок, тому принаймні одна з частин – Б чи В містить щонайменше 

𝑘 зелених точок, нехай це буде частина Б. 

Тепер, зрозуміло, що частина В містить щонайменше 𝑘 синіх або жовтих точок, твердження доведене, 

бо частина А містить принаймні 𝑘 жовтих точок, частина Б – зелених, частина В – синіх, або частина 

А містить принаймні 𝑘 синіх, частина Б – зелених, частина В – жовтих. В іншому випадку В повинна 

містити щонайменше 𝑘 зелених точок. Тоді, аналогічно, якщо Б містить щонайменше 𝑘 жовтих точок 

твердження доведене, адже частина А містить принаймні 𝑘 синіх точок, частина Б – жовтих, частина 

В – зелених. Отже, частини Б та В містять менше ніж 𝑘 жовтих точок, а частина А – рівно 𝑘 жовтих 

точок, що призводить до суперечності. 
 

Альтернативне розв'язання. Розіб’ємо коло на 3 частини по 3𝑘 в кожній довільним чином. Ці 

частини ми позначимо за рухом годинникової стрілки через А, Б та В. В кожній з цих частин виберемо 

той колір, точок якого – найбільше, зрозуміло, що ця кількість точок або більше 𝑘, або усі три кольори 

мають на цій ділянці по 𝑘 точок. Якщо однакова кількість точок двох чи трьох кольорів, то байдуже 

який виберемо. Якщо усі 3 кольори зустрілися, то твердження доведене. Якщо ні, то нехай в двох 

групах А та Б більшість має, наприклад, жовтий колір, а в третій групі В – зелений. Якщо в групі А чи 

Б синього не менше за 𝑘, то просто вибираємо цю дугу для синього і твердження доведене. Таким 

чином в кожній з груп А та Б – синього менше 𝑘, але тоді його в групі В – більше 𝑘. Якщо в групі А чи 

Б зеленого не менше за 𝑘, то вибираємо цю групу для зеленого, групу В – для синього і твердження 

доведене.  

Залишається ситуація (*): в групі А та Б жовтого строго більше 𝑘, а синього та зеленого – менше 𝑘, а 

в групі В – жовтого менше 𝑘 точок, а синього та зеленого – більше 𝑘.  

Повернемо розподіл дуг рівно на 1 точку. Тоді в кожній з дуг кожний колір не може змінитися більше 

ніж на 1. Якщо лишається ситуація (*), то повертаємо ще на 1 точку. Ситуація (*) не може 

повторюватися постійно, бо при повороті на 3𝑘 точок ділянка А перейде в Б, Б – в В та В – перейде в 
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А. Але усі ситуації, в які може перейти одним кроком ситуація (*) умову задовольняють, значить 

шуканий поділ існує.  

 

9.4. Нехай 𝐾 – довільна точка сторони 𝐴𝐷 прямокутника 𝐴𝐵𝐶𝐷. Точки 𝐸 і 𝐹 обрано на 

променях 𝐴𝐵 та 𝐷𝐶 відповідно так, що 𝐴𝐸 = 𝐶𝐾 та 𝐷𝐹 = 𝐵𝐾, а точка 𝑃 лежить між 

прямими 𝐴𝐵 та 𝐶𝐷 так, що ∠𝐾𝐶𝐷 = 2∠𝑃𝐴𝐵 та ∠𝐾𝐵𝐴 = 2∠𝑃𝐷𝐶. Доведіть, що ∠𝐾𝑃𝐸 =
∠𝐾𝑃𝐹. 

(Вадим Соломка) 
 

Доведення. На стороні 𝐵𝐶 оберемо точку 𝐿 так, 

що 𝐵𝐿 = 𝐷𝐾 (рис. 4). Прямокутні ∆𝐷𝐶𝐾 та ∆𝐵𝐴𝐿 

рівні за двома катетами, тому 𝐴𝐸 = 𝐶𝐾 = 𝐴𝐿 та 

∠𝐾𝐶𝐷 = ∠𝐸𝐴𝐿 = 2∠𝑃𝐴𝐸, але ∆𝐸𝐴𝐿 − 

рівнобедрений, тому 𝐴𝑃 − серединний 

перпендикуляр до відрізка 𝐸𝐿, аналогічно 𝐷𝑃 − 

серединний перпендикуляр до відрізка 𝐹𝐿, отже 

точка 𝑃 − центр описаного кола ∆𝐸𝐹𝐿, зокрема 

𝑃𝐸 = 𝑃𝐹. Покажемо, що 𝐾𝐸 = 𝐾𝐹, тоді потрібна 

рівність кутів буде випливати з рівності ∆𝐸𝑃𝐾 та 

∆𝐹𝑃𝐾. З теореми Піфагора, 𝐾𝐶2 − 𝐾𝐷2 = 𝐾𝐵2 −
𝐾𝐴2. З останньої рівності маємо, що 𝐾𝐸2 =
𝐴𝐸2 + 𝐴𝐾2 = 𝐶𝐾2 + 𝐴𝐾2 = 𝐷𝐾2 + 𝐵𝐾2 =
𝐷𝐾2 + 𝐷𝐹2 = 𝐾𝐹2, тому 𝐾𝐸 = 𝐾𝐹, що завершує розв’язання задачі. 

 

10 клас 
 

10.1. Задача 7.2. 
 

10.2. Задача 9.2. 
 

10.3. На меншій дузі 𝐵𝐶 описаного 

кола 𝜔 трикутника 𝐴𝐵𝐶 обрано 

довільну точку 𝐷, 𝐻 – точка перетину 

висот ∆𝐴𝐵𝐶, точка 𝑀 – середина 

сторони 𝐵𝐶, а точка 𝐹 симетрична 

точці 𝐷 відносно точки 𝑀. Пряма 𝐷𝐻 

вдруге перетинає коло 𝜔 в точці 𝐸, а 𝑃 

– точка перетину прямих 𝐵𝐶 та 𝐹𝐻. 

Доведіть, що 𝑃𝐻 =  𝑃𝐸. 

(Пєшков Ростислав) 
 

Розв’язання. Нехай 𝛺 – описане коло трикутника 𝐵𝐻𝐶 (рис. 5). Відомо, що 𝜔 та 𝛺 рівного радіусу, а 

тому з симетрії маємо, що 𝐹 лежить на 𝛺. Проведемо пряму 𝑙 симетричну прямій 𝐷𝐻 відносно 𝑀, тому 

𝑙 ∥ 𝐷𝐻. Нехай 𝑁 – точка симетрична 𝐻 відносно 𝑀, а 𝑇 – друга точка перетину 𝑙 і 𝜔. Тоді 𝐻𝐷𝑁𝐹 – 

паралелограм, 𝐸𝑇 = 𝐷𝑁, як хорди стягуючі паралельні прямі, тому 𝐸𝑇 = 𝐻𝐹, а також ∠𝐸𝑇𝐹 =
 ∠𝐷𝑁𝐹 =  ∠𝐻𝐹𝑇, звідки 𝑇𝐸𝐻𝐹 – рівнобічна трапеція. Нехай 𝑋 - перетин прямих 𝐸𝑇 і 𝐻𝐹. Степені точки 

𝑋 відносно 𝜔 та 𝛺 рівні (𝑋𝐸 × 𝑋𝑇 та 𝑋𝐻 × 𝑋𝐹 відповідно), тому 𝑋 лежить на радикальній осі цих кіл, 

тобто на прямій 𝐵𝐶. 𝑋 -  перетин прямих 𝐻𝐹 і 𝐵𝐶, звідси 𝑃 ≡ 𝑋, що і завершує доведення. 

 

10.4. Задане натуральне число 𝑛 ≥ 3. Сума додатних чисел 𝑥1, 𝑥2, … , 𝑥𝑛 дорівнює 𝑛. 

Доведіть, що справджується нерівність: 

Рис. 4 

Рис. 5 
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𝑥1
3

𝑥1
2 + 𝑥2𝑥3

+
𝑥2
3

𝑥2
2 + 𝑥3𝑥4

+⋯+
𝑥𝑛−1
3

𝑥𝑛
2 + 𝑥1𝑥2

+
𝑥𝑛
3

𝑥𝑛
2 + 𝑥1𝑥2

≥
𝑛

2
. 

(Павло Проценко) 
 

Розв’язання. Запишемо для першого доданку суми таку нерівність, скориставшись нерівністю між 

середнім арифметичним і середнім геометричним для двох чисел: 

𝑥1
3

𝑥1
2 + 𝑥2𝑥3

= 𝑥1 −
𝑥1𝑥2𝑥3

𝑥1
2 + 𝑥2𝑥3

≥ 𝑥1 −
𝑥1𝑥2𝑥3

2𝑥1√𝑥2𝑥3
= 𝑥1 −

1

2
√𝑥2𝑥3 ≥ 𝑥1 −

1

4
(𝑥2 + 𝑥3). 

Додаючи аналогічні нерівності для кожного з 𝑛 доданків, отримаємо, що ліва частина не менша за  

(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛) −
1

4
(2𝑥1 + 2𝑥2 +⋯+ 2𝑥𝑛) = 𝑛 −

𝑛

2
=
𝑛

2
, 

що й треба було довести. 

 

11 клас 
 

11.1. Розв’яжіть в додатних числах рівняння 

[
1

 {𝑥} 
]  =  𝑥2. 

Тут через [𝑦] позначено цілу частину числа 𝑦, тобто найбільше ціле число, що не 

перевищує 𝑦, а через {𝑦} позначено дробову частину числа 𝑦, тобто {𝑦} = 𝑦 − [𝑦]. 

Наприклад, [5,25 ] = 5, [𝜋] = 3, [7] = 7, {
21

4
} =

1

4
, {10} = 0. 

(Федір Юдін) 
 

Відповідь: 𝑥 = √2. 

Розв’язання: число  𝑛 = [
1

{𝑥}
] =  𝑥2 ціле і додатне, тож 𝑛 ∈ 𝑁 і 𝑥 = √𝑛. Маємо що 𝑛 + 1 >

1

{𝑥}
 ≥  𝑛, що 

можна записати як 
1

𝑛+1
< {𝑥} ≤

1

𝑛
. Якщо позначити [𝑥] = 𝑘, то маємо 𝑘 < 𝑥 ≤ 𝑘 +

1

𝑛
. Піднесемо до 

квадрату: 𝑘2 < 𝑥2 = 𝑛 ≤ 𝑘2 +
2𝑘

𝑛
+

1

𝑛2
. Оскільки числа 𝑛 і 𝑘2 цілі, то звідси маємо що 1 ≤

2𝑘

𝑛
+

1

𝑛2
<

2√𝑛

𝑛
+

1

𝑛2
, звідки легко бачити, що 𝑛 ≤ 4. Після простого перебору бачимо, що тільки 𝑛 = 2, отже 𝑥 =

√2 задовольняє рівняння.  

 

11.2. Дано натуральне число 𝑛 > 1. Для яких 𝑛 довільний дільник 𝑑 < 𝑛 цього числа 

можна подати у вигляді 𝑑 = 𝑥2 + 𝑦2, де кожне з чисел 𝑥 та 𝑦, не обов’язково різних, є 

дільником числа 𝑛 або дорівнює 0? 

(Павло Проценко) 
 

Відповідь. 𝑛 = 2𝑘, 𝑛 = 10 або 𝑛 – просте число. 

Розв’язання. Помітимо, що для 𝑛 = 2𝑘 довільний дільник має вигляд 2𝑙 і задовольняє умову для 𝑥 =

2
𝑙

2, 𝑦 = 0 для парного 𝑙 і 𝑥 = 𝑦 = 2
𝑙−1

2  для непарного 𝑙. Для простого 𝑛 єдиним дільником 𝑑 < 𝑛 є 1, що 

задовольняє умову. 

Припустимо 𝑛 = 𝑝1
𝛼1𝑝2

𝛼2 …𝑝𝑘
𝛼𝑘, де 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑘. Якщо 𝑛 не є простим, то 𝑝1 = 𝑥

2 + 𝑦2, а значить 

𝑥, 𝑦 ∈ {0, 1}, значить 𝑝1 = 2. Якщо 𝑛 ділиться на 4, то розглянемо число 𝑑 = 𝑝1𝑝2𝑝3…𝑝𝑘 < 𝑛, нехай 

𝑑 = 𝑥2 + 𝑦2, очевидно 𝑥, 𝑦 > 0. Якщо 𝑛  не є степенем двійки, то 𝑑 > 2 і хоча б одне (нехай 𝑥) з чисел 

цієї пари більше 1, отже воно має дільник 𝑝𝑖. Але також 𝑝𝑖 є дільником 𝑑, а значить і дільником 𝑦. 

Однак тоді 𝑑 = 𝑥2 + 𝑦2 ділиться на 𝑝𝑖
2, що суперечить вибору 𝑑.  

Якщо 𝑛 не ділиться на 4, то розглянемо 𝑑 = 𝑝2…𝑝𝑘 < 𝑛,  нехай 𝑑 = 𝑥2 + 𝑦2. Якщо, наприклад, 𝑥 має 

дільник 𝑝𝑖, 𝑖 > 1, то отримаємо суперечність аналогічно до минулого випадку. Отже 𝑥, 𝑦 можуть мати 

лише простий дільник 2, тобто 𝑥, 𝑦 ∈ {0, 1, 2}, бо 𝑛 не ділиться на 4. Таким чином, 𝑑 ∈ {0, 1, 2, 4, 5, 8}. 
Однак 𝑑 має бути добутком декількох непарних простих, тому 𝑑 = 5. Звідси, 𝑛 = 2 ⋅ 5𝛼. Однак число 
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10 не можна подати у вигляді 𝑥2 + 𝑦2 інакше як 32 + 12, а 3 не є дільником 𝑛. Отже, єдине можливе 

значення 𝑛 – це 𝑛 = 10. Дійсно, 1 = 12 + 02, 2 = 12 + 12, 5 = 12 + 22. 
 

11.3. Для взаємно простих натуральних чисел 𝑚,𝑛 знайдіть таку найбільшу додатну 

константу 𝑐, що в довільній множині 𝑆, яка містить рівно 𝑘 натуральних чисел, можна 

вибрати принаймні ⌈𝑘𝑐⌉ таких елементів, щоб жодні два вибрані елементи не 

відрізнялись рівно на 𝑚 чи на 𝑛.  

Через ⌈𝑥⌉ для довільного дійсного числа 𝑥 позначене найменше ціле число, що не менше 

за 𝑥 (функція стеля від 𝑥), наприклад, ⌈5⌉ = 5, ⌈𝜋⌉ = 4. 

(Антон Тригуб) 
 

Відповідь: Якщо 𝑚, 𝑛 непарні, то 𝑐 =
1

2
, інакше 𝑐 =

𝑚+𝑛−1

2(𝑚+𝑛)
. 

Розв'язання. Спершу розглянемо випадок, коли 𝑚, 𝑛 непарні. В множині {1, 1 + 𝑚} можна вибрати не 

більше одного числа, тому 𝑐 ≤
1

2
. З іншого боку, з будь-якої множини 𝑆 можна вибрати або всі парні, 

або всі непарні числа, хоч якихось буде не менше ніж ⌈ 
𝑆

2
 ⌉. Числа одної парності не можуть відрізнятись 

на непарне число. 
 

Тепер припустимо, що одне з чисел парне. Тоді розглянемо таку множину:  
{1, 1 + 𝑚, 1 + 2𝑚,… , 1 +𝑚𝑛, 1 + (𝑚 − 1)𝑛, 1 + (𝑚 − 2)𝑛,… , 1 + 𝑛}.  

Неважко пересвідчитися, що із взаємної простоти чисел 𝑚 та 𝑛 усі числа в ній непарна кількість чисел: 

𝑚 + 𝑛, і кожні два сусідні числа в цій множині відрізняються на 𝑚 чи на 𝑛. Отже, з цієї множини можна 

вибрати максимум 
𝑚+𝑛−1

2
 чисел, а тому 𝑐 ≤

𝑚+𝑛−1

2(𝑚+𝑛)
. 

 

Покажемо, що 𝑐 =
𝑚+𝑛−1

2(𝑚+𝑛)
 задовольняє умову. Розглянемо всі остачі при діленні на 𝑚+ 𝑛 вигляду 

2𝑘𝑚 (mod 𝑚 + 𝑛) для 0 ≤ 𝑘 ≤
𝑚+𝑛−3

2
. Покажемо, що жодні два числа з такими остачами при діленні 

на 𝑚 + 𝑛 не можуть відрізнятись рівно на 𝑚 чи на 𝑛. 
 

● 2𝑘1𝑚 − 2𝑘2𝑚 ≡ 𝑚 (mod 𝑚 + 𝑛) ⇒ 2𝑘1 ≡ 2𝑘2 + 1 (mod 𝑚 + 𝑛), що неможливо, бо обидва ці 

числа менші за 𝑚 + 𝑛, одне парне, а інше непарне. 

● 2𝑘1𝑚 − 2𝑘2𝑚 ≡ 𝑛 ≡ −𝑚 (mod 𝑚 + 𝑛) ⇒ 2𝑘1 + 1 ≡ 2𝑘2 (mod 𝑚 + 𝑛), що також неможливо. 
 

Отже, ми можемо вибрати множину 𝑇 з 
𝑚+𝑛−1

2
 остач по модулю 𝑚 + 𝑛 так, що можна вибрати всі числа 

з цими остачами, і не порушити умову. Очевидно, якщо додати константу до всіх цих остач, умова 

збережеться, бо різниці не порушаться. Тому достатньо показати, що для будь-якої множини 𝑆 

знайдеться 𝑘 таке, що принаймні для ⌈ 𝑆 ⋅
𝑚+𝑛−1

2(𝑚+𝑛)
 ⌉ елементів 𝑥 множини 𝑆, 𝑥 + 𝑘 (mod 𝑚 + 𝑛)  ∈ 𝑇. Це 

легко показати: для кожного елементу 𝑆 працює рівно 
𝑚+𝑛−1

2
 чисел 0 ≤ 𝑘 < 𝑚 + 𝑛, тому якесь 𝑘 

працює принаймні для ⌈ 𝑆 ⋅
𝑚+𝑛−1

2(𝑚+𝑛)
 ⌉. 

 

11.4. Дано трикутник 𝐴𝐵𝐶 з кутом ∠𝐶 = 45°. Точка 𝐾 на стороні 𝐵𝐶 та точка 𝐿 на стороні 

𝐴𝐶 вибрані так, що ∠ 𝐶𝐴𝐾 = 2 ∠ 𝐵𝐴𝐾 та ∠ 𝐶𝐵𝐿 = 2 ∠ 𝐴𝐵𝐿. Прямі 𝐴𝐾 та 𝐵𝐿 

перетинаються в точці 𝑃. Точка 𝑁 обрана так, що чотирикутник 𝑃𝐾𝑁𝐿 – паралелограм. 

Точка 𝑃′ симетрична до 𝑃 відносно прямої 𝐴𝐵, а точка 𝐶′ симетрична 𝐶 відносно прямої 

𝐾𝐿. 

а) Доведіть, що центр описаного кола ∆𝐶𝑃′𝑁 лежить на прямій 𝐾𝐿. 

б) Доведіть, що точки 𝐴,𝑁, 𝐵, 𝐶′ лежать на одному колі . 

(Михайло Штанденко) 
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Розв'язання. a) Позначимо 𝛼 =
1

3
∠𝐴 та 𝛽 =

1

3
∠𝐵. Помітимо, що 𝛼 + 𝛽 =

1

3
(180∘ − ∠𝐶) = 45∘ (рис. 6). 

Нехай 𝐴𝐾 і 𝐵𝐿 перетинають описане коло 𝛺 трикутника △ 𝐴𝐵𝐶 у точках 𝐾′та 𝐿′ відповідно. Оскільки 

∠𝐴𝑃𝐵 = 180∘ − 𝛼 − 𝛽 = 135∘, то чотирикутник 𝐶𝐾𝑃𝐿 є вписаним. Також точка 𝑃′, лежить на 𝛺, бо 

∠𝐴𝑃′𝐵 + ∠𝐴𝐶𝐵 = 135∘ + 45∘ = 180∘. Помітимо, що прямі 𝐴𝐾 та 𝐵𝐿 − бісектриси кутів ∠𝐶𝐴𝑃′та 

∠𝐶𝐵𝑃′відповідно, отже, точки 𝐾′та 𝐿′є серединами двох дуг 𝐶𝑃′кола 𝛺, тому 𝐾′𝐿′є серединним 

перпендикуляром до 𝐶𝑃′. Нехай 𝑁′— точка на 𝐾′𝐿′така, що 𝐶𝑁′є бісектрисою кута ∠𝐾′𝐶𝐿′. Тоді 

отримуємо, що 

∠𝑁′𝐶𝐿 = 45∘ − ∠𝐿𝐶𝐿′ = 45∘ − ∠𝐴𝐵𝐿′ = 45∘ − 𝛽 = 𝛼 = ∠𝐵𝐿′𝐾′, 
отже, чотирикутник 𝐶𝐿′𝐿𝑁′є вписаним, звідки ∠𝐿𝑁′𝐿′ = ∠𝐿𝐶𝐿′ = ∠𝐴𝐾′𝐿′, тому 𝐿𝑁′ ∥ 𝐴𝐾′. 
Аналогічно, 𝐾𝑁′ ∥ 𝐵𝐿′, і ми робимо висновок, що 𝑁 = 𝑁′. 
Доведемо, що 𝐶′лежить на описаному колі трикутника ∆𝐶𝑁𝑃′. Нехай 𝑆 − точка перетину дотичної до 

𝛺 в точці 𝐶 з прямою 𝐾′𝐿′. Застосовуючи теорему Паскаля для виродженого шестикутника 𝐶𝐶𝐴𝐾′𝐿′𝐵, 

отримуємо, що точки 𝑆 = 𝐶𝐶 ∩ 𝐾′𝐿′, 𝐿 = 𝐶𝐴 ∩ 𝐿′𝐵 та 𝐾 = 𝐴𝐾′ ∩ 𝐵𝐶 лежать на одній прямій. Помітимо, 

що  

∠𝑆𝐶𝑁 = ∠𝑆𝐶𝐿′ + 45∘ = ∠𝐶𝐾′𝑁 + 45∘ = ∠𝑆𝑁𝐶. 
Отже, 𝑆𝐶 = 𝑆𝑁. Крім того, очевидно, що 𝑆𝑃′ = 𝑆𝐶, бо 𝑆 лежить на 𝐾′𝐿′, і 𝑆𝐶′ = 𝑆𝐶, бо 𝑆лежить на 𝐾𝐿, 

тому 𝑆𝐶 = 𝑆𝑁 = 𝑆𝑃′ = 𝑆𝐶′, що і дає потрібне. 

 

б) Помітимо, що ∠𝐿′𝐾′𝑃 = ∠𝑃𝐵𝐴 = ∠𝐴𝐵𝑃′ = ∠𝑃𝐾′𝑃′, і аналогічно ∠𝐾′𝐿′𝑃 = ∠𝑃𝐿′𝑃′. Отже, точка 𝑃 − 

інцентр △𝐾′𝐿′𝑃′, а тому лежить на бісектрисі кута ∠𝐾′𝑃′𝐿′, яка, з симетрії, є прямою 𝑃′𝑁. Позначимо 

𝑋 = 𝐶𝑃′ ∩ 𝐴𝐵. Оскільки 𝑃′𝑋 = 𝑋𝑃 та 𝑃′𝑁 = 𝑁𝐶, отримуємо, що ∠𝑃′𝑃𝑋 = ∠𝑋𝑃′𝑃 = ∠𝑃′𝐶𝑁. Отже, 

чотирикутник 𝐶𝑁𝑃𝑋 − вписаний. Доведемо, що ∠𝐶′𝐶𝑃′ = ∠𝑃′𝐶𝑃. Справді,  

Рис. 6 
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∠𝑃′𝐶𝑃 = ∠𝑃′𝐶𝐾 − ∠𝑃𝐶𝐾 = ∠𝑃′𝐴𝐵 − ∠𝑃𝐿𝐾 = 𝛼 − (∠𝐶𝐿𝐵 − ∠𝐶𝐿𝐾) = 𝛼 − (3𝛼 + 𝛽) + ∠𝐶𝐿𝐾 =
= 𝛽 − 90∘ + ∠𝐶𝐿𝐾 = ∠𝐴𝐵𝑃′ − (90∘ − ∠𝐶𝐿𝐾) = ∠𝐴𝐶𝑃′ − ∠(𝐶𝐴, 𝐶𝐶′) = ∠𝐶′𝐶𝑃′ 

Таким чином,  

∠𝑃𝑁𝑋 = ∠𝑃𝐶𝑋 = ∠𝑃′𝐶𝑃 = ∠𝐶′𝐶𝑃′ = ∠𝑃′𝑁𝐶′, 
що означає, що точки 𝑁,𝑋, 𝐶′ − лежать на одній прямій. Нарешті, можемо зробити висновок, що 𝑋𝐴 ⋅
𝑋𝐵 = 𝑋𝐶 ⋅ 𝑋𝑃′ = 𝑋𝑁 ⋅ 𝑋𝐶′, звідки чотирикутник 𝐴𝑁𝐵𝐶′є вписаним, чого ми й прагнули. 

 


